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ABSTRACT 

This paper is an attempt to describe and otaaraeteriie the 

equivalent convex program of a two-stage linear program under 

uncertainty.    The study has been divided into two parts«    In the 

first one» we examine the properties of the solution set of the 

problem and deriye explicit expressions for some particular 

cases.    The second section is devoted to the derivation of the 

objective function of the equivalent convex program.    We show 

that it is convex and continuous.    We also give a necessary 

condition for its differentiability and establish necessary and 

sufficient conditions for the solvability of the problem«    Finally, 

we give the equivalent convex program of certain classes of 

programming under uncertainty problems« i.e. «hen the constraints 

and the probability space have particular structures. 
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I. INTRODUCTION 

The standard form of the problem —which we assume solvable —to 

be considered in this paper isi 

(I) Minimize  z(x) = ex + E^{qy) 

subject to      Ax      = b 

Tx +   My = 5, K on {d,99?) 

x ^ 0, y ^ 0 

where   A   is a matrix   m X n,    T    is    m x n,    M   is   m x n,    K    is a 

random vector defined on the probability space    (^>^F). 

This problem belongs to the class of stochastic linear programming 

problems for which one seeks a here-emd-now solution«    Problem (1)  is 

known in the literature as the two-atage linear program under uncertainty. 

One interprets it as follows»    The decision maker mist select the activity 

levels for   x,    say   x = x,   he then observes the random event   K = K 

and he is finally allowed to take a corrective action   y,    sush that 

y > 0,    Ity = C -Tx   and   qy   is minimum.    This second stage decision   y 

is taken when no uncertainties are left in the problem. 

It is clear that we could also write the objective function of 

(1) as: 

(II) z(x) = cx+ ^(Min qy|x) 

The interpretation given above Indicates that (1) as well as (I1) are 

conventional ways to express the same concept. Many practical probl 
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can be formulated to fit the standard form, e.g. Inventory problems, 

planning problems, transportation problems with uncertain demand, etc. 

All quantities considered here belong to the reals, denoted 9t . 

M n 
Vectors will belong to finite-dimensional spaces si  and whether they 

are to be regarded as row vectors or column vectors will always be 

clear from the context in which they appear. Thus, for example, the 

expressions 

X= (X^yX^, . • . ,X^, . . .,X:Q) 

Tx « x 

m 
y y = 2yi yi 

are easily understood.    No special provisions have been made for 

transposing vectors. 

For the sake of simplicity, we shall assume that    (^,0»?)    is the 

probability space induced in   9r ,   F   determines a Lebe ague-Stiel tj es 

measure and    9  is the completion for    F   of the Borel algebra in 91    . 

We also assume that    5=E{5]    exists.    Also, note that our notation 

( or. (i,^,F)    is meant to imply that the first stage decision has no 

effect on the probability space on which   C    is defined.    In other words, 

£    is independent of   x. 

The marginal probability space for   l-l,...,m   will be denoted 

by   (d. ,Ä ,F.).    If it exists, we denote the density function of   5. 



by   fjCO*   If   CJ    is * dieerete random turlabl«, ve denote Its 

probability mass function also by   fjCtj) •   No confusion should 

arise from this abuse of notation.   Horeorer, let   or,    and   ß.    be 

respectir ly the greatest lover bound and the least upper bound of 

a..    If   2.    is not bounded below, we set   a. « -•, if   3.    is not 

bounded aboTe» we set     ßj ■ + • . 

We usually think of   d   as the oontez hull of all elements of  # 

with positire measure.    In other words,   3   is equal to the intersection 

of all conrex subsets of Mn   with measure one.    The probability measure 

may be discrete, continuous,  or a mixture of both.    Only in one 

particular case (II.A), shall we use another characteriiation of   3, 

namelyi    5 = {5|f(0 / 0). 

The first part of this paper characterises the solution set of 

(1), and it points out some of its properties.   In the second part, we derire 

a programming problem whose set of optimal solutions is identical to the 

set of optimal solutions to problem (1). 



II.    THE SaLÜTICN SET 

Ue are only Interested in the here-and-nuv decision to be taken. 

Thus, a solution to (1) Is not a pair    (x ,y ).    To see this, it 

suffices to remark that once    x   is selected and   K    Is obserred, the set 

of   optimal second stage decisions   j,   Is uniquely determined by 

solving the linear programs 

(2) Minimize        qy 

subject to   Ity - K -1x 

It is thus obvious that the only decision variable of problem (1) is    x. 

Nevertheless, the second stage affects our decision on   x   In two 

ways.    First, we need to limit our set of acceptable first stage decision 

to those for which there exists a feasible second stage decision, I.e. 

problem (2)  is feasible.    Also, for each selection of a vector   x,    we 

must take Into account the expected costs of the second stage decisions 

such an    x   may generate!    £*{Minqy|x}. 

A.    The Set of Feasible Solutions 

A feasible solution to (1)  is a vector   x   such that It satisfies the 

first stage constraints and such that It Is always possible to find a 

feasible solution to the second stage problem (2), whatever be the value 

assumed by   C on a.   Dantzig and Madansky [2]   call such a solution a 

permanently feasible solution.    The word "permanently" was introduced to 



reinforce this notion of feasibility of the second stage problem for 

all values of (. We have rejected this terminology because it some- 

times leads to confusion in the understanding of problem (]). 

The following example shows how the Dantzig - Madansky definition 

of permanently feasibility differs from what one belieres is meant by 

permanently feasibility. We reserve the terms "permanently feasible" 

for the following concept» Select a vector x such that the constraints 

be satisfied with probability one. Consider the following problem! 

(3)        Minimize z(x) = ex + Q(Tx-C) 

xc Q 

where K   is a m-dimensional random vector on {£,&,?),    T is a matrix 

m x n, k. = {x|Ax = b, x ^ 0} cjl and Q is a real-valued function. 

If Q is defined as follows! 

Q(Tx-0 =0       if Tx ^ 5 

Q(Tx-5) =+•      otherwise 

then, for each given (, (3) is a linear programming problem. Such a 

function Q(Tx-() requires permanent feasibility, i.e. if there exists 

a solution (f(x) / +w) to problem (3) it mist satisfy the condition! 

U)        Tx^5 V^fH 

To see that problem (1) is not as restrictive, e.g. let 

Q(Tx-5) =EjJ ^(T^-^j 



vhere 

^V"^ = 0 lf hx^Ki 

Such a function   Q(Tx-C)    does1 no longer impose permanently 

feasibility, i.e.    i(x)    is no longer identically equal to   + •    for 

all    x   which does not satisfy condition (A).    We can then rewrite 

(3)  as followsi 

(5) Minimize      z(x) = ex + ErtO.y + q~y'} 

subject to   Ax = b, 

Tx + Iy+ - ly" = C, 5 on (ä^F,F) 

x 2 o» y+ > 0, y" ^ 0 

Problem (5)  is a special case of problem (1), known as the couiplete 

problem [$]. 

From our definition of feasible solution, it is clear that the 

decision maker is limited in its decision by a double set of constraints. 

Let 

^ = {xJAx = b, x ^ 0} . 

We say that K, is the set determined by the fixed constraints. 

(6) Propositioni  K, is a convex polyhedron 

A set C is convex if x,, x2tC implies [x. ,x2] c C. By 

convex polyhedron we mean that K,  can be written as the sum of a 

convex polytope (convex hull of a finite number of points in Än) and 



a convex polyhedral cone. 

Let 

K2 = Cx|V5*a, Sy^O suchthat ^r = 5 - TxJ 

We say that K« Is the set representing the constraints Imposed on 

our vector x by the Induced constraints. The word "induced" means 

that these constraints are the restrictions imposed on x by the 

condition: The second stage problem (2) must be feasible for all 

5e - . This is the real meaning of the equality sign found in the 

constraints of the standard formt 

Tx + My = C,       K on  (H,^,F) 

Let 

K25 = {x|Tx = 5 -My   for some   y ^ 0] 

It is easy to see that   K^    is a convex polyhedron. 

(7) Proposition«     K2   is convex 

We hpve   K0 =   D   Kor ,    then   K0   is either empty, a singleton or 
2       U£   2<, 2 

for all pairs of points    x. ,x2cK2   we have    x.,x2cK2r    for all    5«s. 

Then    \K  c d,  [Xj,^] c K^,    also    [^»x^ C   Oji^ = Kj. 

Obviously, 

(8) Proposition»    K = K-,   D K2   is a convex set 

where    K    Is the set of feasible solutions.    Remark that we have expressed 

the set of feasible solution in terms of   x   along» rather than   x   and   y, 



8 

In what follows, we assume that   K   has full dimension.    If this were 

not the case, one would need to appeal to the relative topology.    Most 

of our proofs do not require this assumption, but it simplifies our 

treatment and terminology. 

The set   K,    is immediately available in terms of linear equations 

and inequalities involving    x    only.    The set   K2   presents much more 

difficulty.    In general, say when   ^   is a continuum,  i.e.      n   K^    is 

an :.nfinite intersection of convex polyhedrons,  then the characterization 

of    K?    in terms of    x   along is a much more complex problem.    One main 

difficulty one encounters in trying to solve a program under uncertainty 

(no assumptions on the probability space or on the structure of the 

constraints of (1))  lies in determining whether or not a given   x   belongs 

to    K. 

We now examine some special case where the assumptions made either 

on the constraints structure of problem (2)   or on the probability space 

(£,^,F)     allow us to obtain fairly easily an explicit expression for the 

set    K-    (and so for    K) . 

1.    5    has a finite number of points (Card   |-| < a») 

The intersection     D       is finite and since    K^-    is a convex 

12k polyhedron,  so is   K_,    and so is   K.    Let    K  tK  ,...,5      be the values 

of    K    for which    f(C)  ^ 0.    Then, 

K0 = {x|Tx + MyX = K1, i = l,...,k) 



2. The matrix M*! (Identity) and g Is compaot 

Then 

K = UlV^iSy^O and y=5-Tx) 

which implies 

x«K2    iff    VKvz, J:-Tx ^ 0 

Since a is bounded, 3 a smallest closed interval, say 

H* c JR , with lowar bound cr, such that 2 c«». The or.'s 

correspond to the lover bounds for the random variables K.»  i«!»••• »5» 

(9) Proposition»  V^«S, ü-Tx^O iff Tx ^ a 

The proof of this proposition is trivial. We have, 

(10)        K2= (xlTx^cr) 

3. M = (Ii-l)» The problem is complete 

One says that problem (1) is complete [ 5] when the matrix M 

(after an appropriate rearrangement of rows and columns) can be 

partioned in two parts, whose first part is the identity matrix and the 

second part is the negative of an identity matrix, M=(l,-I). This 

case seems to represent a very important class of applications of 

programming under uncertainty. It is thus an encouraging fact that the 

set K can be expressed immediately in terms of linear constraints in 

x. No assumption at all is necessary on the probability space (H^F). 
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Let us partition the vector y as follows 

y = (y »y") 

where    y      corresponds to    I    and   y"    to    -I,    then 

K2 = {x|VU-, ay+>0, y" ^ 0    suchthat    y+-y~={;-Tx} 

(11) Proposition:    K = 1L 

Since   Kp = JK    (it is always possible to express any number 

as the difference of two non-negative numbers), we have   K = K, HJR   =K,1 

This property,    K=K,,    gives an intuitive justification for the 

use of the word "complete".    Nevertheless, we should remark that   K=K^ 

does not imply that   M = (1,-1) . 

B.    A Feasibility Test 

We now fix   x   and    £    and concentrate our attention on the 

feasibility of problem (2).   From Farkas' lemma we get: 

(12) Either the equations 

My = ^ -Tx 

have a non-negative solution or the inequalities 

uM > 0       uU -Tx)   < 0 

have a solution. 

(13) Propositont      xeKp    iff   V^   we have    U(x, 0  > 0,    where 

U(x,0 = (Min uU -Tx) |uM > 0} 
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If for a given x and VC«a we have U(x,0 ^ 0, it implies 

that the system of inequalities uM ^ 0 and u( £ - Tx) < 0 have no 

solution. By (12), the system My=f;-Tx has then a non-negative 

solution, for all ^e^. This means that xcK^. 

Proposition (13) yields a test which allows us to determine if a 

given xeK,, is or is not a feasible solution to (1). Nonetheless, 

such a procedure would be completely inefficient if we had to perform 

this test for all ^ in s. If is does not have finite cardinality, 

+hls test for any given x would involve solving an infinite number of 

linear programs of the form: 

Minimize   uU-Tx) 

subject to  uM ^ 0 

If problem (1) is stated in a slightly different form (it is very 

often possible to reduce problem (1) to (H))» viz.i 

(U)        Minimize   z(x) = ex + E^{qy) 

subject to      Ax      = b 

Tx + My >*.,        K on  (a^P) 

x > 0, y ^ 0 

it is possible to obtain a more efficient test. We then apply the 

following form of Parkas' lemma I Exactly one of the two alternations 

hold: Either the inequality 

^ ^ - Tx 



12 

has a non-negative solution, or the Inequalities 

uM ^ 0     uU - Tx) < 0 

have a non-negative solution. 

Then 

(15) Proposition:      xeK   Iff   x«K     and   V? c=, U(x,C)  > 0,    where 

U(x,0  =  {Mln u({; -Tx) |uM ^ 0, u ^ 0) 

If   d   has a lower bound—from a practical point of view this is 

a very mild condition—then, let   or    be such that   ae^   and   er.  ^ £. 

for all    ^cs.,  i=l,...,m.    Since   u    is restricted to be non-negative, 

we have 

U(x,cr)  ^U(x,0 V^cH 

Moreover,    or«-   and    U(x,or)  < 0   imply that there exists 

at least one point of   a   for which the condition   U(x,0  ^ 0   does not 

hold.    By Proposition (10)  this    x   is not a feasible solution.    We have 

proved; 

(16) Proposition!      xeK   iff   xe^    and    U(x,cr) ^ 0 

For this case,  it is thus sufficient to solve one linear program 

to test the feasibility of a given    x   which belongs to    K, .    Proposition 

(11)  is not true if   or.  ^ £.    for all    ^.»«-j» l = l».»«»ni   but    a j c 

For instance, consider the following examplei 

Let 
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T = 
1      0 

0     1 -[::] 
= = Ul-l ^^ ^0,      l2< 2,    ^ + ^2 < 0} 

and let    x = (^»^  = ^»^    belonß to   Ki»    By definition of   5, 

a = (a^jQfp)  = (-1,0).    It is easy to see that   H c {^ |C = Nty-, y ^ Oj 

and that the affine transformation obtained by translating   d   by   Tx, 

map    d    into itself    (Tx = 0),    i.e.    x = 0 cK .    But    U(x,a)    is not 

bounded below. 

Suppose now that we have at hand   x   such that    xeK,   and 

U(x,a)  < 0,    where    U(x,cr)    is as defined in (15).    Let   u   be an 

optimal solution toi 

Minimize       u(a - Tx) 

subject to   uM ^ 0 

u ^ 0     . 

Since U(x,cr) < 0, we have üa < uTx and by (16)  x /K. Thus, every 

x e K must satisfy the inequality! 

(17) (uT) x < ucr . 

We can add this condition (12) to the fixed constraints, Ax = b, x ^ 0. 

It has thf effect of cutting off part of the set K,. 
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III. THE BQUIVALDIT CONVEX PROGRAMMING FROBLIM 

We now show that a linear program under uncertainty can be 

expressed in terms of first stage decision variable x, as a convex 

program that we shall call the equivalent convex programming probl«» 

We derive the properties of the objective function of the equivalent 

convex program and construct the equivalent convex program when the 

constraints and the probability space satisfy the assumptions made in 

Section II. 

A. The Equivalent Convex Program 

(18) Definitiont A programming problems Minimize f(x), xtK, Is 

an equivalent programming problem to {1),  if f(x) is given explicitly 

for each x (not Just as a function of x, y, and ^ as in (1'))» if 

K is the set of feasible solutions to (1), and if an optimal solution 

to the equivalent programming problem is an optimal solution to (l). 

In Section II, we have already characterized the set of feasible 

solutions to (1). To exhibit an equivalent convex program to (1), it 

suffices to show that (I1) is convex in x. Let us consider the second 

stage problem (2) for a fixed C in a, as a function of x. Then, 

by Proposition (3) of Appendix I, 

(19) P(x,0 = {Min qy|^y = ^ -Tx, y ^ 0) 

is a convex of x on {x|Tx = t. -My, y j> 0} and in particular on K-* 
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By the duality theorem for linear programs, vt hare 

(20) P(x,0 = Q(x,0 

where 

Q(x,0 = (Max n(C-Tx) |nM^q} for fixed   ^   in   S. 

Let 

(21) Q(x) = E^Min qy |^ = ^ -Tx, y ^ 0) = E^{Q(x,0 ) = E^P(x,0 ) 

be the expected value of the second stage problem (2)  for a given   x   in 

K2. 

(22) Propoaitiont     Q(x)    is conrex on   K«    [2]. 

Since by Proposition (3)  of Appendix I,    Q(x,0    is conrex in   x 

on   K.»    it suffices to remark that applying the operator   E,    to   Q(X|0 

is equivalent to performing a positive weighted linear combination of 

convex functions, i.e.    Q(x)    is convex on   K-. 

Thus the equivalent convex program to (l)  is. 

(23) Minimize   z(x) = ex + Q(x) 

subject to       xcK 

(2A) Propositiont  Q(x) is continuous on K2. 

Since Q(x) is convex on K«, the result is immediate if K2 is 

open. To see that K. could be open, consider the following examplet 
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Let   M = l, T = l    and   .= =(0,1),    then    K2=(-*, 0) .    In general, by 

Corollary (12)  of Appendix I,    Q(x,0    is uniformly continuous in 

x   and    £,    thus    Q(x)  = /     Q(x,0dF(0    is continuous in    x    on   K«. 
Acs 

Consider the dual to the second stage problem (2), 

(25) Maximize       n(^-Tx) 

subject to    rrM <£ q, 

and let TT(X, 0 be the optimal solution to (25) for fixed x and C. 

In what follows, we assume that n(x,0» and Q(x,0 are defined for 

all    x    in   K,    and all    K    in   H.    Define 

(26) n(x) = E^{n(x,0) = /   n(x,0dF(0 

as the expected optimal solution to problem (25)   for a given    x.    Also, 

let 

t(x) =E^n(x,^j = y   n(x,0^dF(0 

^c= 

:,jte that    TT(X)     is a iii-dimensional vector and that    ^(x)     is a scalar. 

(27)    Proposition;      [c -n(x)T]x = -^(x)    is a supporting hyperplane 

of    z(x)     at    x = x,    where    xc K   [2], 

Since    [c-n(x)T]x4   ^(x)  = z(x),    it suffices to show that,    VxeK, 

z(x)   > [c -TT(X)T]X +  ^(x) .    But this is true,  since for all    xeK,    and 

for all    t,    in   d,    n(x,0(^-Tx)  > TT(X,0 (^ - Tx) .    Integrating both 
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sides with respect to dF( 0 and adding ex on both sides, we get» 

z(x) = [c-TT(X)T]X+t(x) ^ [c-TT(X)T]X + t)r(x). 

(28) Corollaryt  [c-n(x)T] is a gradient of z(x) at x. 

We use the term "gradient", as defined in ( 7) of Appendix II. 

(29) Proposition! If F(0 is continuous, then z(x) is differentiable 

on K. 

By Proposition (15)   of Appendix I,    TT(X,0    is piece-wise constant. 

Moreover,  since the  set of points where    TT(X,0    is multi-valued has 

measured zero,    Tr(x)    and    ^(x)    are unique for all    xcK.    This Implies 

that   z(x)    has z unique supporting hyperplane for all    x   in   K.    By 

Proposition (11)   of Appendix II,    z(x)    is differentiable on   K. 

The condition    F(0    continuous, is sufficient but not necessary, 

e.g., let 

T = M=I,    £={{;1=(^),    f;2 =(*)),    fU1)  = fU2)  = 1/2 

C  =   [2,2],      q =   [1,1],     X =   [X^X^ 

then      z(x)  = x,  + x_. 

(30) Proposition;      Let    x0cK,    then    xü    is optimal iff   SnCx0) 

such that     VxtK,     [c -TT(X
0
)T]X

0
 ^ [c -n(x0)T]x. 

The proof is a direct application of  (28)  and Proposition (lö    of 

Appendix II. 
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(32) Minimize        z(x) = ex + f^qy1 + f2qy2 +...+fkqyk 

subject to Ax = b 

Tx + ^ ^1 

Tx + My2 = t2 

• 
• 
• 

Tx + 

• 
• 

• 
• 

*10> 71 10, y2} 0,...,yk > 0. 

Dantzig and Madansky [2]   hare shown that there exist a dual of 

this problem which is in the standard form for the application of the 

decomposition algorithm of Dantzig and Wolfe [4.].   To find this dual 

problem, we use a more direct approach than the one found in  [ 2 ]. 

-1 -2    -k 
Let (oyTT ,n ,...,n ) be the variable appearing in the usual dual 

formulation of (32). Define 

nX=-V   jl=l,...,k, 
f* 

then the dual reads i 

Maximize    ob + fV?1 + f V*2 +.,.+ fV's* 

oA + fVr   + fVl   +...+ f^^T   ^ c 

T^M ^ 

n1^   ^  q 
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This problem has an "angular" structure.    The first   n    inequalities 

can be used to generate the master program.    The last    k x n 

inequalities constitute the sub-problem.    Depending on    T   and   M, 

it may be advantageoua to use variants of the decomposition algorithm, 

e.g.,  see Abadie [l]. 

Another simple ti'ansformatioa gives the problem (32) the structure 

of a multi-stage system (so called "staircase" system) where the linear 

constraints for all stages but one are identical.    This last feature 

may simplify considerably the computation.    To obtain this form, 

^■1        X+l subtract from each row of    Tx + My       = ^    ~    the corresponding row of 

Tx n  Hy   - f.     for    X = l,...,k-1.    Problem (32)  becomest 

^ 1
+fV+...+ fk-V-1 + fV-lt 

Minimize        z(x)=cx4fqy   +fqy   +...+ f^    qy       ^rqy 

subject to Ax =b 

Tx +      M/1 = ^ 

-     My1 +     ^y2 = f;2-^1 

•-My1""1 +      Myk = f;*-^"1 

x > 0, y1 ^ 0, y2 > 0,  • • •    y^"1 > 0, yk > 0 . 

2.    M    is square, non-singular and   ä    is bounded 

We show that under these assumptions there exists a linear p ogramming 

problem whose set of optimal solutions is the set of optimal solutions of 

t.b*i linear program under uncertainty. 
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where 

If    L    is a Leontlef matrix with substitution such that    H    contains 

some    y    >   3,    and if   q    + q~ > 0,     then one can show [ 3]   that such 

a pr hlem has also an equivalent convex program of the form (3A) • 
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that    f(t)     satisfies the Jensen's inequality, 

Xf(t0)  + (1 -X)^^)   = \cx0 + (1 -X)cx1 = ex > c^ = fd^) 

for all    t »t.    in  C and    0 ^ X < 1.    Loosely speaking, we can 

rrphrßsc  (3) as follows:    A linear program is a convex function of 

its right-hand side. 

U)     Corollary:    Let    f»(t)  =  {Min tx|Ax = b,  x ^ 0}    and let 

C* =  {t|f*(t)   >-»}.     Then    f»(-t)     is concave on C*. 

(5) Proposition:    If   A    is square and non-singular, then    C  is a 

simplicial cone and    f(t)     is linfar on   C. 

It suffices to remark that    f(t)  = cA^t    on  C = [t|A   t ^ 0}. 

(6) Proposition;    Let    B    be a submatrix of    A    such that    B    is an 

optimal basis for some    t.    Then    3    is an optimal basis for all    t 

in   Cn =  ftlR- t > J},        0    is a simplicial cone, and   C   c C. 

(7) Corollary;    If    B    is an optimal basis for  some    t,    then   C      is 

the unique subset of  C   for which    B    constitutes an optiiaal basis. 

ly Propositions (5)   and (6); 

(ft)     Corollary:      f(t)     is linear on   C  . 

(?)     Proposition:     There exists a decomposition of  C  into simplicial 

cones  Cn,...,C     such that 1'      ' k 



(i)   Cj =  {tlB.t ^ 0)    l = l,...,k,    where    B.     is a square, 

non-singular matrix of   A    of rank    in, 

(ii)    B.    is an optimal basis for  some    t, 

(iü)    Ii  c = c, 
i=l     i 

(iv)    int C . n int C. = #   for    i / J. 

This proposition can be proved using  (5),  (6)  and (7).    It is 

rasy to see that this decomposition may not be unique.    By Propositions 

(3)   and (9)  we get: 

(10) Proposition!    f(t)     is piece-wise linear on  C. 

(11) Proposition:    f(t)    is continuous on   C. 

Since f(t) is convex it is continuous on the int C Moreover, 

(8), (9) and (10) imply that f(t) is linear on, and in the neighbor- 

hood of,  the boundary. 

(12) Corollary;    f(t)     is uniformly continuous on  C. 

This is immediate by  (10)  and (11) . 

Z msider the following problem: 

(13) Maximize    nt subject to    nA £ c 

and let   n(t)    be an optimal solution to (13)  for a given    t    in C . 

(1A)    Proposition:     If    A    is square and non-singular, then   n(t)     is 

constant on   C. 

It suffices tu romark that   TT(t)  = cA'      on   C = {t|A    t > 0). 
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(15) Pro^osltioni    TT(t)     is a piece-wise  constant function on   C, 

This proposition can be proved u^ing (9)  and  (14.).    Let us 

remark that    n(t)     may be milti-valued on the boundaries of the 

simplicial cones determining the decomposition of    C,  but it is single 

value! on their interior. 

(16) Propositiont    n(t),t   is a supporting hyperple.ne to    f\t)     at 

t = t,    teC. 

Since at    t = t,     the hyperplane   n(t) «t    intersects    f(t) ,  it 

suffices to  show that, 

n(t) «t (_ f(t) VtcC. 

But this is true,   since by the definition of    n(t), 

n(t) -t £ n(t) «t = f(t). 

This last proposition,   (13)   and (11)  imply that 

(17) Proposition;       The graph of    f(t),     {(2,t) [z > f( t) ,  te C ),    is 

a convex polyheiral  cone with vertex    0. 


















